Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## N,N'-(Oxydi-p-phenylene)diphthalimide

#### Yi-Tao Li<sup>a</sup>\* and Zhiguo Wang<sup>b</sup>

<sup>a</sup>Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and <sup>b</sup>School of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China Correspondence e-mail: lytm1234@yahoo.com.cn

Received 5 November 2007; accepted 9 November 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.118; data-to-parameter ratio = 9.3.

The title compound,  $C_{28}H_{16}N_2O_5$ , is a bis-imide derivative in which two phthalimide units are linked by an oxydi-*p*-phenylene bridge. The dihedral angle between the planes of the two central benzene rings is 86.1 (4)°. The isoindole groups make dihedral angles of 46.0 (14) and 77.5 (13)° with the attached benzene rings. Intermolecular C-H···O hydrogen bonds contribute to the stability of the structure.

#### **Related literature**

For details of the biological activity and uses of bis-imide derivatives, see: Rich *et al.* (1975); Degenhardt *et al.* (2002); Mallakpour & Kowsari (2004); Zhang *et al.* (1999); Langhals & Kirner (2000); Yakimov & Forrest (2002). For a related structure, see: Li *et al.* (2007).



#### **Experimental**

Crystal data  $C_{28}H_{16}N_2O_5$  $M_r = 460.43$ 

Orthorhombic,  $P2_12_12_1$ *a* = 7.5059 (11) Å b = 16.480 (3) Å c = 17.551 (3) Å  $V = 2171.0 (6) \text{ Å}^3$ Z = 4

#### Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: none 13091 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$  $wR(F^2) = 0.118$ S = 1.232925 reflections

# Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                                                                                 | D-H                          | $H \cdot \cdot \cdot A$                      | $D \cdots A$                | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|-----------------------------|---------------------------|
| $\begin{array}{c} C11{-}H11{\cdot}{\cdot}{\cdot}O5^{i}\\ C19{-}H19{\cdot}{\cdot}{\cdot}O5^{ii} \end{array}$ | 0.93<br>0.93                 | 2.47<br>2.56                                 | 3.222 (4)<br>3.298 (4)      | 138<br>136                |
| Symmetry codes: (i) -                                                                                       | $x + 2, y + \frac{1}{2}, -z$ | $x + \frac{3}{2}$ ; (ii) $x + \frac{1}{2}$ , | $-y + \frac{1}{2}, -z + 2.$ |                           |

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank Dr Xiang-Gao Meng for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2220).

#### References

- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). *SMART* (Version 5.054) and *SAINT* (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Degenhardt, C. F., Smith, M. D. & Shimizu, K. D. (2002). Org. Lett. 4, 723-726.
- Langhals, H. & Kirner, S. (2000). Eur. J. Org. Chem. pp. 365-380.
- Li, J., Li, Y.-T. & Wang, Z.-H. (2007). Acta Cryst. E63, 03420.
- Mallakpour, S. & Kowsari, E. (2004). J. Appl. Polym. Sci. 91, 2992-3000.
- Rich, D. H., Gesellchen, P. D., Tong, A., Cheung, A. & Buckner, C. K. (1975). J. Med. Chem. 18, 1004–1010.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yakimov, A. & Forrest, S. R. (2002). Appl. Phys. Lett. 81, 3085-3087.
- Zhang, Q., Hamilton, D. G., Feeder, N., Teat, S. J., Goodman, J. M. & Sanders, J. K. M. (1999). New J. Chem. 23, 897–903.

Mo  $K\alpha$  radiation  $\mu = 0.10 \text{ mm}^{-1}$ 

 $0.30 \times 0.30 \times 0.30$  mm

2925 independent reflections

2644 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

T = 292 (2) K

 $R_{\rm int} = 0.027$ 

316 parameters

 $\Delta \rho_{\text{max}} = 0.16 \text{ e } \text{\AA}^-$ 

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ 

Acta Cryst. (2008). E64, o77 [doi:10.1107/S1600536807057455]

### *N*,*N*'-(Oxydi-*p*-phenylene)diphthalimide

### Y.-T. Li and Z. Wang

#### Comment

Bisimides are heterocyclic compounds, some of which have biological activity (Rich *et al.*, 1975). Moreover, they are synthetic precursors with applications in organic synthesis (Degenhardt *et al.*, 2002), polymer synthesis (Mallakpour & Kowsari, 2004), supramolecular chemistry (Zhang *et al.*, 1999), and for the development of new materials (Langhals & Kirner, 2000) and molecular electronic devices (Yakimov & Forrest, 2002).

Following our studies on the synthesis of bisimide derivatives (Li *et al.*, 2007), we report here the structure of the title compound (Fig. 1). The two phthalimide units are linked by a (phenoxy)phenylene bridge. The dihedral angle between the planes of the two central benzene rings is 86.1 (4)° The isoindole groups make dihedral angles of 46.0 (14)° and 77.5 (13)° with the attached benzene rings. Compared to a similar structure, N,N-(methylenedi-*p*-phenylene)diphthalimide (Li *et al.*, 2007), the packing pattern is different; this may be due to the bridging methylene group being replaced by the bridging O atom. Intermolecular C—H···O hydrogen bonds contribute to the stability of the structure (Table 1).

#### **Experimental**

A solution of phthaloyl dichoride (420 mg, 2 mmol) was added slowly over a period of 10 min to a solution of 4-aminophenyl ether (400 mg, 2 mmol) in dichloromethane (25 ml) at 273 K to yield a light yellow precipitate. Triethylamine (5 ml) was then added to dissolve the precipitate which became a yellow suspension after stirring for 12 h. The compound was filtered and dried (yield 510 mg, 70%). Single crystals of the title compound were obtained by recrystallization from dimethylformamide at room temperature.

#### Refinement

All H atoms were initially located in a difference Fourier map; they were then placed in calculated positions and constrained to ride on their parent atoms, with C—-H = 0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ . In the absence of significant anomalous scattering effects, Friedel pairs were merged.

#### **Figures**



Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids. H atoms have been omitted.

### *N*,*N*'-(Oxydi-*p*-phenylene)diphthalimide

#### Crystal data C28H16N2O5 $F_{000} = 952$ $M_r = 460.43$ $D_{\rm x} = 1.409 {\rm Mg m}^{-3}$ Mo Kα radiation Orthorhombic, P212121 $\lambda = 0.71073 \text{ Å}$ Hall symbol: P 2ac 2ab Cell parameters from 5562 reflections $\theta = 2.3 - 25.9^{\circ}$ a = 7.5059 (11) Å $\mu = 0.10 \text{ mm}^{-1}$ b = 16.480(3) Å c = 17.551 (3) Å T = 292 (2) KV = 2171.0 (6) Å<sup>3</sup> Block, colourless Z = 4 $0.30 \times 0.30 \times 0.30 \text{ mm}$

#### Data collection

| Bruker SMART 4K CCD area-detector diffractometer | 2644 reflections with $I > 2\sigma(I)$ |
|--------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube         | $R_{\rm int} = 0.027$                  |
| Monochromator: graphite                          | $\theta_{\text{max}} = 28.0^{\circ}$   |
| T = 292(2)  K                                    | $\theta_{\min} = 2.3^{\circ}$          |
| $\varphi$ and $\omega$ scans                     | $h = -8 \rightarrow 9$                 |
| Absorption correction: none                      | $k = -21 \rightarrow 17$               |
| 13091 measured reflections                       | <i>l</i> = −22→22                      |
| 2925 independent reflections                     |                                        |

#### Refinement

| Refinement on $F^2$             | H-atom parameters constrained                                                     |
|---------------------------------|-----------------------------------------------------------------------------------|
| Least-squares matrix: full      | $w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 0.1294P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $R[F^2 > 2\sigma(F^2)] = 0.046$ | $(\Delta/\sigma)_{max} = 0.017$                                                   |
| $wR(F^2) = 0.118$               | $\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$                             |
| <i>S</i> = 1.23                 | $\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$                            |
| 2925 reflections                | Extinction correction: none                                                       |
| 316 parameters                  |                                                                                   |

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$  $\boldsymbol{Z}$ х y C1 0.0449(5)0.8558 (3) 0.62700(13) 1.04648 (13) C2 0.9322 (4) 0.70185 (14) 1.05712 (13) 0.0492 (5) 0.059\* H2 0.9588 0.7202 1.1059 C3 0.9691 (4) 0.74958 (14) 0.99444 (15) 0.0492 (6) H3 0.7999 0.059\* 1.0231 1.0009 C4 0.9259 (3) 0.72283(12)0.92192 (12) 0.0432(5)C5 0.8447 (4) 0.64854 (13) 0.91224 (12) 0.0474(5)Н5 0.8124 0.057\* 0.6313 0.8637 C6 0.8115(4)0.59984(13)0.97454 (13) 0.0485(5)H6 0.7595 0.5491 0.9681 0.058\* C7 0.9251 (4) 0.85440 (13) 0.84975 (13) 0.0474 (5) C8 1.0414 (4) 0.74006 (15) 0.78915 (14) 0.0506 (6) C9 0.9801 (3) 0.87704 (15) 0.77128 (14) 0.0491 (5) C10 1.0480(3) 0.0494 (5) 0.80952 (15) 0.73544 (13) C11 1.1046 (4) 0.81216 (19) 0.66035 (15) 0.0616(7) H11 1.1511 0.7665 0.6363 0.074\* C12 1.0891 (5) 0.8850(2) 0.62283 (15) 0.0712 (9) H12 1.1250 0.085\* 0.8886 0.5722 C13 1.0219 (4) 0.9526(2) 0.65846 (17) 0.0706 (9) H13 0.085\* 1.0131 1.0009 0.6313 C14 0.9667 (4) 0.95066 (17) 0.73407 (16) 0.0598 (7) H14 0.9228 0.9966 0.7584 0.072\* C15 0.8345 (4) 0.49870 (14) 1.10677 (13) 0.0493 (6) C16 0.45102 (17) 1.11019 (18) 0.6860(4) 0.0634 (7) H16 0.5730 0.4742 1.1105 0.076\* C17 0.7065 (4) 0.36759 (17) 0.0649(7) 1.11325 (19) H17 0.6066 0.3343 1.1156 0.078\* C18 0.33395 (13) 1.11278 (13) 0.0484 (6) 0.8727 (4) C19 1.0208 (4) 1.1071 (2) 0.0687 (8) 0.38264 (17) H19 1.1340 0.3598 1.1052 0.082\* C20 0.9999 (4) 0.46591 (17) 1.1043 (2) 0.0693 (8) H20 0.083\* 1.0993 0.4994 1.1006 C21 0.9359(4)0.20766 (15) 1.18659 (14) 0.0559(6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C22 | 0.8648 (4) | 0.19351 (15)  | 1.05848 (15) | 0.0577 (7)  |
|-----|------------|---------------|--------------|-------------|
| C23 | 0.9404 (4) | 0.12045 (15)  | 1.16640 (15) | 0.0556 (6)  |
| C24 | 0.8952 (4) | 0.11189 (15)  | 1.09096 (15) | 0.0563 (6)  |
| C25 | 0.8777 (5) | 0.03623 (17)  | 1.0583 (2)   | 0.0741 (9)  |
| H25 | 0.8460     | 0.0300        | 1.0074       | 0.089*      |
| C26 | 0.9095 (6) | -0.03000 (18) | 1.1046 (3)   | 0.0897 (12) |
| H26 | 0.8972     | -0.0819       | 1.0844       | 0.108*      |
| C27 | 0.9587 (6) | -0.0216 (2)   | 1.1793 (3)   | 0.0890 (12) |
| H27 | 0.9808     | -0.0676       | 1.2085       | 0.107*      |
| C28 | 0.9758 (5) | 0.05402 (19)  | 1.2116 (2)   | 0.0757 (9)  |
| H28 | 1.0101     | 0.0601        | 1.2622       | 0.091*      |
| N1  | 0.9654 (3) | 0.77149 (11)  | 0.85670 (10) | 0.0471 (5)  |
| N2  | 0.8933 (3) | 0.24810 (11)  | 1.11843 (11) | 0.0533 (5)  |
| 01  | 0.8144 (3) | 0.58251 (10)  | 1.11128 (10) | 0.0597 (5)  |
| O2  | 0.8594 (3) | 0.89603 (10)  | 0.89869 (11) | 0.0626 (5)  |
| O3  | 1.0881 (3) | 0.67169 (11)  | 0.77944 (11) | 0.0703 (6)  |
| O4  | 0.9586 (4) | 0.24056 (13)  | 1.24656 (11) | 0.0848 (8)  |
| O5  | 0.8234 (4) | 0.21334 (12)  | 0.99506 (11) | 0.0835 (7)  |
|     |            |               |              |             |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-----------------|-----------------|--------------|--------------|--------------|
| C1  | 0.0544 (13) | 0.0353 (10)     | 0.0449 (11)     | 0.0030 (10)  | 0.0066 (10)  | 0.0026 (9)   |
| C2  | 0.0603 (14) | 0.0456 (12)     | 0.0416 (10)     | -0.0062 (11) | -0.0017 (11) | -0.0034 (9)  |
| C3  | 0.0631 (15) | 0.0353 (9)      | 0.0491 (11)     | -0.0105 (10) | -0.0011 (11) | -0.0034 (9)  |
| C4  | 0.0522 (12) | 0.0335 (9)      | 0.0437 (10)     | 0.0012 (9)   | 0.0038 (10)  | 0.0009 (9)   |
| C5  | 0.0631 (14) | 0.0363 (11)     | 0.0427 (11)     | 0.0000 (10)  | -0.0001 (11) | -0.0062 (9)  |
| C6  | 0.0644 (14) | 0.0298 (9)      | 0.0515 (12)     | -0.0061 (10) | 0.0062 (11)  | -0.0041 (9)  |
| C7  | 0.0549 (13) | 0.0344 (10)     | 0.0528 (13)     | -0.0017 (10) | 0.0010 (11)  | 0.0026 (9)   |
| C8  | 0.0596 (15) | 0.0459 (13)     | 0.0464 (12)     | -0.0013 (11) | 0.0034 (11)  | -0.0033 (10) |
| C9  | 0.0511 (13) | 0.0459 (12)     | 0.0502 (12)     | -0.0065 (10) | -0.0071 (11) | 0.0058 (10)  |
| C10 | 0.0522 (13) | 0.0511 (13)     | 0.0449 (12)     | -0.0085 (11) | -0.0035 (10) | 0.0019 (10)  |
| C11 | 0.0655 (17) | 0.0728 (17)     | 0.0467 (12)     | -0.0166 (14) | -0.0006 (12) | -0.0007 (12) |
| C12 | 0.0768 (19) | 0.090 (2)       | 0.0469 (13)     | -0.0275 (18) | -0.0038 (13) | 0.0141 (15)  |
| C13 | 0.0731 (19) | 0.0712 (18)     | 0.0674 (17)     | -0.0239 (16) | -0.0144 (15) | 0.0306 (16)  |
| C14 | 0.0633 (16) | 0.0489 (13)     | 0.0673 (16)     | -0.0089 (12) | -0.0110 (14) | 0.0154 (12)  |
| C15 | 0.0711 (16) | 0.0379 (11)     | 0.0387 (10)     | -0.0051 (11) | 0.0079 (11)  | 0.0024 (9)   |
| C16 | 0.0620 (16) | 0.0486 (13)     | 0.0797 (18)     | 0.0008 (12)  | -0.0009 (15) | 0.0064 (13)  |
| C17 | 0.0617 (16) | 0.0456 (13)     | 0.087 (2)       | -0.0137 (12) | 0.0021 (15)  | 0.0080 (14)  |
| C18 | 0.0660 (15) | 0.0370 (10)     | 0.0423 (11)     | -0.0051 (11) | 0.0033 (11)  | 0.0042 (9)   |
| C19 | 0.0567 (15) | 0.0478 (14)     | 0.102 (2)       | -0.0010 (12) | 0.0124 (16)  | -0.0028 (15) |
| C20 | 0.0626 (17) | 0.0446 (13)     | 0.101 (2)       | -0.0120 (13) | 0.0191 (16)  | -0.0048 (15) |
| C21 | 0.0687 (17) | 0.0492 (14)     | 0.0496 (13)     | -0.0032 (13) | 0.0003 (12)  | 0.0084 (11)  |
| C22 | 0.0773 (18) | 0.0470 (13)     | 0.0489 (13)     | -0.0085 (13) | 0.0083 (13)  | -0.0022 (10) |
| C23 | 0.0586 (14) | 0.0461 (12)     | 0.0622 (14)     | 0.0027 (12)  | 0.0086 (12)  | 0.0093 (11)  |
| C24 | 0.0628 (15) | 0.0429 (12)     | 0.0633 (14)     | -0.0016 (11) | 0.0173 (13)  | -0.0003 (11) |
| C25 | 0.088 (2)   | 0.0525 (15)     | 0.0818 (19)     | -0.0029 (16) | 0.0251 (18)  | -0.0115 (15) |
| C26 | 0.099 (3)   | 0.0418 (14)     | 0.128 (3)       | 0.0071 (16)  | 0.044 (3)    | -0.0095 (18) |

| C27             | 0.094 (3)     | 0.0545 (17) | 0.118 (3)   | 0.0193 (18)  | 0.030 (2)    | 0.0254 (19) |
|-----------------|---------------|-------------|-------------|--------------|--------------|-------------|
| C28             | 0.083 (2)     | 0.0565 (17) | 0.088 (2)   | 0.0114 (15)  | 0.0092 (18)  | 0.0242 (16) |
| N1              | 0.0628 (12)   | 0.0349 (9)  | 0.0436 (9)  | -0.0002 (9)  | 0.0033 (9)   | 0.0016 (8)  |
| N2              | 0.0771 (14)   | 0.0392 (9)  | 0.0437 (10) | -0.0040 (10) | -0.0006 (10) | 0.0045 (8)  |
| 01              | 0.0951 (14)   | 0.0372 (8)  | 0.0470 (9)  | -0.0010 (9)  | 0.0187 (10)  | 0.0013 (7)  |
| O2              | 0.0824 (13)   | 0.0389 (9)  | 0.0666 (11) | 0.0050 (9)   | 0.0175 (10)  | -0.0008 (8) |
| O3              | 0.1010 (15)   | 0.0449 (9)  | 0.0649 (10) | 0.0095 (10)  | 0.0192 (12)  | -0.0044 (8) |
| O4              | 0.138 (2)     | 0.0649 (12) | 0.0520 (11) | -0.0018 (14) | -0.0199 (13) | 0.0008 (9)  |
| O5              | 0.142 (2)     | 0.0636 (12) | 0.0452 (10) | -0.0148 (14) | -0.0081 (12) | 0.0031 (9)  |
|                 |               |             |             |              |              |             |
| Geometric param | neters (Å, °) |             |             |              |              |             |
| C1—C2           |               | 1.373 (3)   | C15—0       | 220          | 1.354        | (4)         |
| C1—C6           |               | 1.380 (3)   | C15—0       | 216          | 1.365        | (4)         |
| C1—O1           |               | 1.388 (3)   | C15—0       | D1           | 1.392        | (3)         |
| C2—C3           |               | 1.380 (3)   | C16—0       | 217          | 1.385        | (4)         |
| С2—Н2           |               | 0.9300      | C16—I       | H16          | 0.9300       | )           |
| C3—C4           |               | 1.385 (3)   | C17—0       | C18          | 1.365        | (4)         |
| С3—Н3           |               | 0.9300      | C17—I       | H17          | 0.9300       | )           |
| C4—C5           |               | 1.378 (3)   | C18—0       | C19          | 1.374        | (4)         |
| C4—N1           |               | 1.429 (3)   | C18—1       | N2           | 1.427        | (3)         |
| C5—C6           |               | 1.379 (3)   | C19—0       | 220          | 1.382        | (4)         |
| С5—Н5           |               | 0.9300      | C19—I       | H19          | 0.9300       | )           |
| С6—Н6           |               | 0.9300      | C20—I       | H20          | 0.9300       | )           |
| С7—О2           |               | 1.205 (3)   | C21—0       | D4           | 1.196        | (3)         |
| C7—N1           |               | 1.405 (3)   | C21—1       | N2           | 1.406        | (3)         |
| С7—С9           |               | 1.485 (3)   | C21—0       | 223          | 1.481        | (4)         |
| С8—ОЗ           |               | 1.192 (3)   | C22—0       | 05           | 1.201        | (3)         |
| C8—N1           |               | 1.414 (3)   | C22—1       | N2           | 1.401        | (3)         |
| C8—C10          |               | 1.484 (3)   | C22—0       | 224          | 1.478        | (4)         |
| C9—C10          |               | 1.376 (4)   | C23—(       | 224          | 1.374        | (4)         |
| C9—C14          |               | 1.382 (3)   | C23—(       | 228          | 1.378        | (4)         |
| C10-C11         |               | 1.385 (4)   | C24—(       | 225          | 1.378        | (4)         |
| C11—C12         |               | 1.374 (4)   | C25—(       | 226          | 1.381        | (5)         |
| C11—H11         |               | 0.9300      | C25—I       | H25          | 0.9300       | )           |
| C12—C13         |               | 1.374 (5)   | C26—(       | 227          | 1.368        | (6)         |
| C12—H12         |               | 0.9300      | C26—I       | H26          | 0.9300       | )           |
| C13—C14         |               | 1.391 (4)   | C27—0       | C28          | 1.375        | (5)         |
| С13—Н13         |               | 0.9300      | C27—I       | H27          | 0.9300       | )           |
| C14—H14         |               | 0.9300      | C28—I       | H28          | 0.9300       | )           |
| C2-C1-C6        |               | 121.1 (2)   | C15—0       | С16—Н16      | 120.6        |             |
| C2-C1-O1        |               | 117.2 (2)   | C17—0       | С16—Н16      | 120.6        |             |
| C6—C1—O1        |               | 121.6 (2)   | C18—0       | С17—С16      | 120.3        | (3)         |
| C1—C2—C3        |               | 119.2 (2)   | C18—0       | С17—Н17      | 119.8        |             |
| C1—C2—H2        |               | 120.4       | C16—0       | С17—Н17      | 119.8        |             |
| С3—С2—Н2        |               | 120.4       | C17—0       | C18—C19      | 120.2        | (2)         |
| C2—C3—C4        |               | 120.3 (2)   | C17—0       | C18—N2       | 120.1        | (2)         |
| С2—С3—Н3        |               | 119.9       | C19—0       | C18—N2       | 119.8        | (3)         |
| С4—С3—Н3        |               | 119.9       | C18—0       | С19—С20      | 119.4        | (3)         |
|                 |               |             |             |              |              |             |

| $C_{5} - C_{4} - C_{3}$     | 120.0(2)    | C18—C19—H19                | 120.3       |
|-----------------------------|-------------|----------------------------|-------------|
| C5-C4-N1                    | 119 44 (19) | C20—C19—H19                | 120.3       |
| $C_{3}$ — $C_{4}$ — $N_{1}$ | 120 60 (19) | C15 - C20 - C19            | 119 9 (3)   |
| C4—C5—C6                    | 1199(2)     | C15 - C20 - H20            | 120.0       |
| С4—С5—Н5                    | 120.0       | C19—C20—H20                | 120.0       |
| С6—С5—Н5                    | 120.0       | 04—C21—N2                  | 124.5 (2)   |
| C1—C6—C5                    | 119.5 (2)   | 04-C21-C23                 | 130.3 (2)   |
| C1—C6—H6                    | 120.2       | N2-C21-C23                 | 105.2 (2)   |
| C5—C6—H6                    | 120.2       | O5—C22—N2                  | 124.1 (2)   |
| 02—C7—N1                    | 125.5 (2)   | 05                         | 130.1 (2)   |
| 02                          | 129.2 (2)   | N2-C22-C24                 | 105.7 (2)   |
| N1—C7—C9                    | 105.4 (2)   | C24—C23—C28                | 121.4 (3)   |
| 03—C8—N1                    | 125.8 (2)   | $C_{24}$ $C_{23}$ $C_{21}$ | 108.9 (2)   |
| O3—C8—C10                   | 128.9 (2)   | $C_{28} - C_{23} - C_{21}$ | 129.6 (3)   |
| N1—C8—C10                   | 105.29 (19) | C23—C24—C25                | 121.1 (3)   |
| C10-C9-C14                  | 121.4 (2)   | C23—C24—C22                | 108.4 (2)   |
| C10-C9-C7                   | 108.9(2)    | $C_{25} - C_{24} - C_{22}$ | 130.4(3)    |
| C14-C9-C7                   | 1297(3)     | $C_{24} = C_{25} = C_{26}$ | 1170(3)     |
| C9—C10—C11                  | 121.5(2)    | $C_{24} = C_{25} = H_{25}$ | 121.5       |
| C9—C10—C8                   | 108.7(2)    | C26-C25-H25                | 121.5       |
| C11-C10-C8                  | 129.7 (2)   | C27—C26—C25                | 122.0 (3)   |
| C12-C11-C10                 | 117.2 (3)   | C27—C26—H26                | 119.0       |
| C12—C11—H11                 | 121.4       | C25—C26—H26                | 119.0       |
| C10—C11—H11                 | 121.4       | C26—C27—C28                | 120.8 (3)   |
| C11—C12—C13                 | 121.4 (3)   | С26—С27—Н27                | 119.6       |
| C11—C12—H12                 | 119.3       | C28—C27—H27                | 119.6       |
| C13—C12—H12                 | 119.3       | C27—C28—C23                | 117.6 (3)   |
| C12—C13—C14                 | 121.6 (3)   | C27—C28—H28                | 121.2       |
| С12—С13—Н13                 | 119.2       | C23—C28—H28                | 121.2       |
| С14—С13—Н13                 | 119.2       | C7—N1—C8                   | 111.74 (19) |
| C9—C14—C13                  | 116.7 (3)   | C7—N1—C4                   | 124.81 (19) |
| C9—C14—H14                  | 121.6       | C8—N1—C4                   | 123.36 (18) |
| C13—C14—H14                 | 121.6       | C22—N2—C21                 | 111.7 (2)   |
| C20—C15—C16                 | 121.3 (2)   | C22—N2—C18                 | 124.6 (2)   |
| C20—C15—O1                  | 119.8 (2)   | C21—N2—C18                 | 123.6 (2)   |
| C16—C15—O1                  | 118.7 (3)   | C1—O1—C15                  | 116.95 (18) |
| C15—C16—C17                 | 118.8 (3)   |                            | ( )         |
| C6—C1—C2—C3                 | -1.7 (4)    | C28—C23—C24—C25            | 2.2 (5)     |
| O1—C1—C2—C3                 | -177.4 (2)  | C21—C23—C24—C25            | -175.8 (3)  |
| C1—C2—C3—C4                 | 1.4 (4)     | C28—C23—C24—C22            | 179.7 (3)   |
| C2—C3—C4—C5                 | 0.5 (4)     | C21—C23—C24—C22            | 1.7 (3)     |
| C2—C3—C4—N1                 | -179.3 (2)  | O5—C22—C24—C23             | -180.0 (3)  |
| C3—C4—C5—C6                 | -2.0 (4)    | N2—C22—C24—C23             | -0.4 (3)    |
| N1-C4-C5-C6                 | 177.8 (2)   | O5—C22—C24—C25             | -2.8 (6)    |
| C2—C1—C6—C5                 | 0.2 (4)     | N2—C22—C24—C25             | 176.8 (3)   |
| O1—C1—C6—C5                 | 175.7 (2)   | C23—C24—C25—C26            | -0.7 (5)    |
| C4—C5—C6—C1                 | 1.7 (4)     | C22—C24—C25—C26            | -177.6 (4)  |
| O2—C7—C9—C10                | -179.7 (3)  | C24—C25—C26—C27            | -0.9 (6)    |
| N1C7C9C10                   | 0.2 (3)     | C25—C26—C27—C28            | 1.0 (6)     |

| O2—C7—C9—C14    | -1.5 (5)   | C26—C27—C28—C23 | 0.5 (6)    |
|-----------------|------------|-----------------|------------|
| N1-C7-C9-C14    | 178.4 (3)  | C24—C23—C28—C27 | -2.1 (5)   |
| C14—C9—C10—C11  | -0.5 (4)   | C21—C23—C28—C27 | 175.5 (3)  |
| C7—C9—C10—C11   | 177.8 (2)  | O2—C7—N1—C8     | 179.9 (3)  |
| C14—C9—C10—C8   | -178.7 (2) | C9—C7—N1—C8     | 0.1 (3)    |
| C7—C9—C10—C8    | -0.4 (3)   | O2—C7—N1—C4     | 3.4 (4)    |
| O3—C8—C10—C9    | -179.8 (3) | C9—C7—N1—C4     | -176.5 (2) |
| N1-C8-C10-C9    | 0.4 (3)    | O3—C8—N1—C7     | 179.9 (3)  |
| O3—C8—C10—C11   | 2.2 (5)    | C10—C8—N1—C7    | -0.3 (3)   |
| N1-C8-C10-C11   | -177.6 (3) | O3—C8—N1—C4     | -3.4 (4)   |
| C9—C10—C11—C12  | -0.4 (4)   | C10—C8—N1—C4    | 176.4 (2)  |
| C8-C10-C11-C12  | 177.4 (3)  | C5-C4-N1-C7     | 131.9 (3)  |
| C10-C11-C12-C13 | 0.6 (5)    | C3—C4—N1—C7     | -48.3 (4)  |
| C11-C12-C13-C14 | 0.1 (5)    | C5-C4-N1-C8     | -44.3 (3)  |
| C10-C9-C14-C13  | 1.2 (4)    | C3—C4—N1—C8     | 135.5 (3)  |
| C7—C9—C14—C13   | -176.8 (3) | O5—C22—N2—C21   | 178.5 (3)  |
| C12—C13—C14—C9  | -1.0 (4)   | C24—C22—N2—C21  | -1.1 (3)   |
| C20-C15-C16-C17 | 1.8 (4)    | O5-C22-N2-C18   | 1.6 (5)    |
| O1-C15-C16-C17  | -173.8 (3) | C24—C22—N2—C18  | -178.0 (3) |
| C15-C16-C17-C18 | 0.0 (5)    | O4—C21—N2—C22   | -176.6 (3) |
| C16-C17-C18-C19 | -1.8 (4)   | C23—C21—N2—C22  | 2.1 (3)    |
| C16-C17-C18-N2  | 178.0 (3)  | O4—C21—N2—C18   | 0.3 (5)    |
| C17—C18—C19—C20 | 2.0 (5)    | C23-C21-N2-C18  | 179.0 (3)  |
| N2-C18-C19-C20  | -177.8 (3) | C17—C18—N2—C22  | 77.1 (4)   |
| C16-C15-C20-C19 | -1.7 (5)   | C19—C18—N2—C22  | -103.1 (3) |
| O1-C15-C20-C19  | 173.8 (3)  | C17—C18—N2—C21  | -99.4 (3)  |
| C18—C19—C20—C15 | -0.2 (5)   | C19—C18—N2—C21  | 80.4 (4)   |
| O4—C21—C23—C24  | 176.3 (4)  | C2—C1—O1—C15    | -144.7 (3) |
| N2-C21-C23-C24  | -2.3 (3)   | C6—C1—O1—C15    | 39.6 (4)   |
| O4—C21—C23—C28  | -1.5 (6)   | C20-C15-O1-C1   | 71.4 (3)   |
| N2-C21-C23-C28  | 179.9 (3)  | C16-C15-O1-C1   | -113.0 (3) |

## Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H…A  | $D \cdots A$ | $D -\!\!\!\!- \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|---------------------------|-------------|------|--------------|-----------------------------------------------------------------------------|
| C11—H11···O5 <sup>i</sup> | 0.93        | 2.47 | 3.222 (4)    | 138                                                                         |
| C19—H19…O5 <sup>ii</sup>  | 0.93        | 2.56 | 3.298 (4)    | 136                                                                         |

Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) x+1/2, -y+1/2, -z+2.

Fig. 1

